
US Particle Accelerator School

Fundamentals of Accelerator
2012
Day 3

William A. Barletta
Director, US Particle Accelerator School

Dept. of Physics, MIT
Economics Faculty, University of Ljubljana



US Particle Accelerator School

Lumped circuit analogy of resonant cavity
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Q of the lumped circuit analogy

The width is
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Converting the denominator of Z to a real number we see that 
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More basics from circuits - Q
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Translate circuit model to a cavity model:
Directly driven, re-entrant RF cavity

Outer region: Large, single turn Inductor

Central region: Large plate Capacitor

Beam (Load) current
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Expanding outer region 
raises Q

Narrowing gap 
raises shunt impedance

Source: Humphries, Charged Particle
Accelerators
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Properties of the RF pillbox cavity

 We want lowest mode: with only  Ez & Bθ

 Maxwell’s equations are:

 and

 Take derivatives
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For a mode with frequency ω



  Therefore,

 (Bessel’s equation, 0 order)

 Hence,

 For conducting walls, Ez(R) = 0, therefore
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E-fields & equivalent circuit: Ton1o mode
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E-fields & equivalent circuits
for To2o modes

T020
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E-fields & equivalent circuits
for Tono modes

T030

T0n0 has 
n coupled, resonant

circuits; each L & C 
reduced by 1/n
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Simple consequences of pillbox model

L

Ez

R

Bθ

 Increasing R lowers frequency
      ==> Stored Energy, E ~ ω-2

                  E  ~  Ez
2

 Beam loading lowers Ez for the
next bunch

 Lowering ω lowers the fractional
beam loading

 Raising ω lowers Q ~ ω -1/2

 If time between beam pulses,
Ts ~ Q/ω 

      almost all E is lost in the walls
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The beam tube makes field modes
(& cell design) more complicated

Ez

Bθ

 Peak E no longer on axis
 Epk ~ 2 - 3 x Eacc

 FOM = Epk/Eacc

 ωo more sensitive to  cavity
dimensions
 Mechanical tuning & detuning

 Beam tubes add length & €’s
w/o acceleration

 Beam induced voltages ~ a-3

 Instabilities

a
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Cavity figures of merit
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Figure of Merit: Accelerating voltage

 The voltage varies during time that bunch takes to cross gap
 reduction of the peak voltage by Γ (transt time factor)
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Figure of merit from circuits - Q
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Measuring the energy stored in the cavity
allows us to measure Q

 We have computed the field in the fundamental mode

 To measure Q we excite the cavity and measure the E field
as a function of time

 Energy lost per half cycle = UπQ

 Note: energy can be stored in the higher order modes that
deflect the beam
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Keeping energy out of higher order modes

d/b

ωb/c

0            1             2            3             4

TM020

TM010

TE011

TE111
Source bandwidth

(green)

Dependence of mode frequency 
on cavity geometry

Choose cavity dimensions to stay far from crossovers 

10

 5

 1

TE111 mode
End view

Side view



US Particle Accelerator School

Figure of merit for accelerating cavity:
Power to produce the accelerating field

Resistive input (shunt) impedance at ωο relates power dissipated in walls to
accelerating voltage

Linac literature commonly defines “shunt impedance” without the “2”

    Typical values 25 - 50 MΩ
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Computing shunt impedance
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The on-axis field E  and surface H are generally computed with a
computer code such as SUPERFISH for a complicated cavity shape
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To make a linac
Use a series of pillbox cavities

Power the cavities so that Ez(z,t) = Ez(z)eiωt
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Improve on the array of pillboxes?

 Return to the picture of the re-entrant cavity

 Nose cones concentrate Ez near beam for fixed stored energy

 Optimize nose cone to maximize V2; I.e., maximize Rsh/Q

 Make H-field region nearly spherical; raises Q & minimizes
P for given stored energy
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In warm linacs “nose cones” optimize the voltage
per cell with respect to resistive dissipation

Thus, linacs can be considered to be
an array of distorted pillbox cavities…
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Usually cells are feed in groups not individually…. and
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Linacs cells are linked to minimize cost

==> coupled oscillators ==>multiple modes

Zero mode π mode
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Modes of a two-cell cavity
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9-cavity TESLA cell
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Example of 3 coupled cavities

! 

x j = i j 2Lo    and   " = normal mode frequency
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Write the coupled circuit equations
in matrix form

 Compute eigenvalues & eigenvectors to find the three normal modes
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For a structure with N coupled cavities

 ==> Set of N coupled oscillators
 N normal modes, N frequencies

 From the equivalent circuit with magnetic coupling

    where B = bandwidth (frequency difference between
lowest & high frequency mode)

 Typically accelerators run in the π-mode
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Magnetically coupled pillbox cavities
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5-cell π-mode cell with magnetic coupling

The tuners change the frequencies by perturbing wall currents ==> changes the inductance
==> changes the energy stored in the magnetic field
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Dispersion diagram for 5-cell structure
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Schematic of energy flow
in a standing wave structure
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What makes SC RF attractive?
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Comparison of SC and NC RF

     Superconducting RF
 High gradient

==> 1 GHz, meticulous care

 Mid-frequencies
==> Large stored energy, Es

 Large Es

==> very small ΔE/E

 Large Q
==> high efficiency

     Normal Conductivity RF
 High gradient

==> high frequency (5 - 17 GHz)

 High frequency
==> low stored energy

 Low Es

==> ~10x larger ΔE/E

 Low Q
==> reduced efficiency
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Recall the circuit analog

V(t)

I(t)

C
L

Rsurf

As Rsurf ==> 0, the Q ==>∞.   

In practice,

Qnc ~ 104 Qsc ~ 1011
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Figure of merit for accelerating cavity:
power to produce the accelerating field

Resistive input (shunt) impedance at ωο relates power dissipated in walls to
accelerating voltage

Linac literature more commonly defines “shunt impedance” without the “2”

For SC-rf P   is reduced by orders of magnitude

BUT, it is deposited @ 2K
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Surfing analogy of the traveling wave
acceleration mechanism

To “catch” the wave the surfer must be
synchronous with the phase velocity of the wave
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Typically we need a longitudinal E-field to
accelerate particles in vacuum

 Example: the standing wave structure in a pillbox cavity

 What about traveling waves?
 Waves guided by perfectly conducting walls  can have Elong

 But first, think back to phase stability
 To get continual acceleration the wave & the particle must stay in

phase
 Therefore, we can accelerate a charge with a wave with a

synchronous phase velocity,  vph ≈ vparticle < c

E
E E
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Can the accelerating structure be a simple
(smooth) waveguide?

 Assume the answer is “yes”

 Then E = E(r,θ) ei(ωt-kz) with ω/k = vph < c

 Transform to the frame co-moving at vph < c

 Then,
 The structure is unchanged (by hypothesis)
 E is static (vph is zero in this frame)
==> By Maxwell’s equations, H =0
==> ∇E = 0  and  E =  -∇φ
 But φ is constant at the walls (metallic boundary conditions)
==> E = 0

The assumption is false, smooth structures have vph > c
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To slow the wave, add irises

In a transmission line the irises

a) Increase capacitance, C

b) Leave inductance ~ constant

c) ==> lower impedance, Z

d) ==> lower vph

Similar for TM01 mode in the waveguide
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Ultra-relativistic particles (v ≈ c) can
“surf” an rf field traveling at c

RF- in = Po

z

RF-out
= PL

Egap
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RF-cavities in metal and in plasma
Think back to the string of pillboxes

Plasma cavity
100 µm1 m

RF cavity

Courtesy of W. Mori & L. da Silva

G  ~  30 MeV/m G ~ 30 GeV/m
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End of unit


